Recognizing Faults in Software Related Difficult
Data

Michat Choras'2, Marek Pawlicki'?, and Rafal Kozik'?

L ITTI Sp. z o0.0., Poland ,
2 UTP University of Science and Technology, Bydgoszcz, Poland
marek.pawlickiQutp.edu.pl

Abstract. In this paper we have investigated the use of numerous ma-
chine learning algorithms, with emphasis on multilayer artificial neural
networks in the domain of software source code fault prediction. The
main contribution lies in enhancing the data pre-processing step as the
partial solution for handling software related difficult data. Before we
put the data into an Artificial Neural Network, we are implementing
PCA (Principal Component Analysis) and k-means clustering. The data-
clustering step improves the quality of the whole dataset. Using the pre-
sented approach we were able to obtain 10% increase of accuracy of the
fault detection. In order to ensure the most reliable results, we implement
10-fold cross-validation methodology during experiments. We have also
evaluated a wide range of hyperparameter setups for the network, and
compared the results to the state of the art, cost-sensitive approaches -
Random Forest, AdaBoost, RepTrees and GBT.

Keywords: pattern recognition, faults detection, ANN, data clustering

1 Introduction and Context

The development of a reliable software system, especially at a low cost, can be
a significant challenge. The product also has to be market-ready in a reasonable
time. Failure detection and defect proneness prediction become crucial tools for
reliable software creation, helping with decision making and resource allocation.
However, the analysis of software related data causes many problems and possible
pitfalls due to intrinsic data difficulties. The aspects of data difficulties and
motivation for this work are presented in details in Section 2.

To this point various metrics, such as code complexity, or number of revisions
can help spot classes with high probability of bugs. Bug prediction, therefore, is
a classification problem. Numerous classification methods have been employed
to deal with this challenge, along with Artificial Neural Networks(ANN). While
some researchers are reluctant to employ ANNs for their lack of transparency,
however their prowess in modeling nonlinear functional relationships seem to
make them well suited for the problem of defect prediction [1].

Software quality is a fundamental competitive factor for the success of con-
temporary software houses. The Horizon 2020 Q-Rapdis project aims to augment

the strategic decision-making procedures of software development by supplying
strategic indicators of quality requirements. Fault-proneness is one of such met-
rics, as it can significantly affect the overall cost of the software. The Q-Rapids
strategic indicators stem directly form the the metrics and factors calculated
from the software development-related data through the use of various data
mining and machine learning procedures.

The paper is structured as follows: in Section 2 we discuss the problems and
difficulties in analyzing the realistic software related data. In Section 5.1 the
used benchmark dataset is described in details. Section 3 is devoted to Artificial
Neural Network and the algorithms used in this work, while Section 4 addresses
the problem of data imbalance. Results and the comparison with other standard
machine learning approaches are presented in Section 5, while conclusions are
given thereafter.

2 Problems and Difficulties in Real Software Related
Data

In this paper we focus on pre-processing and recognizing (detecting faults/bugs)
the software related data. But why is software data considered difficult anyways?
There are many reasons and answers to such question, e.g. the following aspects
contribute:

— Software related data from real SW companies/developers is considered sen-
sitive commercial data. Commercial companies and SW houses are not eager
to share SW related data, even if it is not directly the code. Most companies
use software management and monitoring tools such as SonarQube, JIRA,
GitLab, Jenkins and many others. Still the data retrieve from those tools pro-
vide information about processes, metrics, quality, testing aspects and much
more, and all of those can reveal information about companies and teams
as such. Moreover, such data might contain personal information (such as
the names of programmers), therefore the privacy and GDPR aspects should
also be taken into account [2].

— From machine learning perspective, software related data is often a one-shot
learning. If you train any system/classifier on a data from one project or
from one company, it is still not representing other projects and companies,
so the training and adjusting algorithms have to be repeated all the time.
Indeed, especially now in the era of RSD (Rapid Software Development)
and agile/lean methodologies, it is difficult to observe long-term patterns
in the way of working. Projects, developers and approaches change often,
causing the sudden changes in the data as well, meaning that the trained
models might not be relevant anymore. Therefore, lifelong learning approach
to machine learning is beneficial and required.

— Software related data contains noise, and almost always the manual work on
the data adaptation is needed. The good example is that, for instance each
team (even within the same company) might use different naming conven-
tions for GitLab labels. The processes, e.g. of tickets cycles can also vary.

\%) O O
4 0| 0] |0l s
§ ol |0
O O
Dense Dense Dense Softmax
Layer Layer Layer

Fig. 1. A general architecture of the neural network adapted for the bug prediction
(the depth of the network varies depending on the experiment).

Software data also suffer from the problem of data imbalance. The classes
containing faults/bugs are under-represented, which causes the typical diffi-
cult data (d2) problem for machine learning techniques [3].

Therefore, the abovementioned problems motivate our research towards im-
proving machine learning techniques for improving the quality of rapid software
development.

3 Proposed Method

Artificial Neural Networks (ANN) constitute a functional instrument for cre-
ating machine learning models. They are a widely used tool for data mining,
as they equip the user with classification, regression, clustering and time series
analysis abilities. The assertion of an ANN is that it tries to imitate the learning
capabilities of a biological neural network, abstractly simplified [4].

The impressive modeling capability of an ANN in fields relying on pattern
recognition lies in direct proportion to its striking adaptability to data. It’s exten-
sive approximation capability is notably beneficial in handling real-world data,
when there is plenty of data, but the patterns buried in the data are yet to be
uncovered. Not only can the network figure out the interconnections among the
variables, but it can generalize to a sufficient extent so as to provide satisfatory
achievements on novel data [5]. An Artificial Neural Network is essentially like
fitting a line, plane, or hyper-plane though a dataset, defining the relationships
that might exist among the features [6].

A multilayer neural network is constructed with the use of multiple computa-
tional (hidden) layers. The data flows from the input layer to the following layer
with adequate arithmetic along the way, and then is supplied to the following
layer and so on until it arrives at the output layer. A model illustrating the gen-
eral architecture of a multilayer neural network can be seen in 3. This mechanism

Principal i g;isétdermg— Recombining Artificial
Dataset M| Component 9 > =>| the => Neural
X Bugs Data
Analysis Dataset Network
Ballancer

Fig. 2. The procedure pipeline.

is dubbed the feed-forward neural network [7]. The number of neurons and the
number of layers depends on the complexity of the required model and on the
availability of data [5]. Using hidden layers with the number of nodes below the
number of inputs creates a loss in representation, which frequently betters the
network’s performance. This might come as a result of eliminating the noise in
data.

Designing a network with too many neurons can result in overfitting. Over-
fitting, or overtraining, means that the model fitted itself to extremally specific
patterns of the training datase, thus it will perform poorly on new, novel data,
as it is not general enough [7].

The proposed method uses Principal Component Analysis for dimensionality
reduction, singles out the bug instances in te dataset, clusters the ’clean’ exam-
ples to the number of clusters that ballances the number of bugs and re-merges
the dataset to achieve a ballanced dataset, which is then fed to the classifier.
The pipeline is shown in fig 2.

4 Data Imbalance

A set is referred to as imbalanced when the classes are not represented in an
equal manner [3]. What might initially seem like a negligible issue can cause ma-
chine learning algorithms to fail. An instance supplied in [8] explains a situation
where a mammography dataset includes no more than 2% of abnormalities. In
that case a classification of all the samples to the majority class would output
an accuracy of 98%, strikingly missing the point of creating a machine learn-
ing algorithm to identify the minority class. Dataset imbalance exists in most
of real-world research problems, so two resolutions to the challenge have been
developed. Resampling - like subsampling the majority class and oversampling
the minority class. Additionally, one could attach a specific cost function to the
training samples [8|. Inspired by the emergence of the granular computing (GrC)
paradigm, as it proved valuable in multiple scenarios [9] and after the successful
application of the paradigm in [10] we are now investigating the feasibility of
GrC for dataset balancing. An interesting approach using k-NN algorithm and
rough sets can be observed in [11]. Our proposed method stems from the idea
that one can include the characteristics of the dataset by clustering the major-
ity class so the number of clusters matches the number of data samples in the
minority class. While this method has it’s drawbacks - namely the problem of
the overlapping clear and bug granules, it still improves the accuracy by 10% as
compared with a simple subsampling approach.

Table 1. Results of all datasets combined, using 10-fold cross validation

precision recall fl-score support
False 0.61 0.57 0.59 80
True 0.64 0.67 0.66 91
Accuracy 0.6612

Table 2. Results of 4 datasets combined, new project classification

precision recall fl-score support
False 0.91 0.42 0.58 1288
True 0.18 0.76 0.28 209
Accuracy 0.469

5 Results and comparison with classic ML methods

5.1 Bug Prediciton Dataset

The dataset [12] which is utilised consists of an aggregation of class-level software
development metrics. As mentioned in the accompanying paper, the main aim of
the dataset is in providing a benchmark as an experimental field to test-run novel
approaches. The set supplies characteristics derived from source code metrics in
conjunction with historical and process information. A number of bugs and their
impact is also supplied. Since the data is provided at a class level, the defect
prediction can also be performed at the class level. The data could, however, be
combined into package or subsystem level by summing class metrics.

The dataset contains metrics of 5 projects, these are: Eclipse JDT Core,
Eclipse PDE Ul, Equinox Framework, Lucene and Mylyn. Every project comes
with a range of derived metrics, of which change log data in the form of comma
separated files was used, for the use in this paper. The features were suggested
by [13].

5.2 Results

In order to prove that the analysed data is difficult and to demonstrate that the
proposed method allowed us to achieve superior results, we have compared vari-
ous classical machine learning methods. In order to do that we have used a ROC
curve (Fig.3) to report the effectiveness in terms of the number of false positives

Table 3. Training on the "Eclipse’ project , classification on 'pde’

precision recall f1-score support
False 0.89 0.90 0.90 1288
True 0.34 0.30 0.32 209

Accuracy 0.8196

(number of false alarms) and true positives (number of correctly predicted bugs).
In these experiments we have considered the following classifiers:

— Random Forest

— AdaBoost

— Ensemble of RepTrees
— Gradient Boosted Trees

All of these methods have been wrapped with a metaclassifier that made
the base classifier cost-sensitive. More precisely, the metaclassifier weights the
training instances according to the total cost assigned to each class.

In this experiment, the Random Forest classifier is composed of 300 Random
Trees that are combined together using the bagging technique. Each bag contains
roughly 20% of data. During the training we control the depth of the trees. We
set a hard limit to 10.

For the AdaBoost method we have used the classical approach. The ensemble
is composed of one-level decision trees (decision stumps). We have noticed that
increasing the ensemble size above 100 does not improve the quality.

The ensemble of RepTrees is build similarly to a Random Forest. However,
instead of a Random Tree as a base classifier we have adapted a well-known
RepTree decision tree (Reduced Error Pruning Tree). This machine learning
technique uses a pruned decision tree. First, the method generates multiple re-
gression trees in each iteration. Afterwards, it chooses the best one. It uses re-
gression tree adapting variance and information gain (by measuring the entropy).
The algorithm prunes the tree using a back tting method.

The GBT stands for Gradient Boosted Trees classifier. The method uses
an additive learning approach. In each iteration a single tree is trained and is
added to the ensemble in order to fix errors (optimise the objective function)
introduced in the previous iteration. The objective function measures the loss
and the complexity of the trees comprising the ensemble.

As it is shown in Fig.3 and Tab.6, we have achieved the best results for the
Random Forest classifier. Although, the recall for this method is higher from
that presented for our method in Tab.??, the precision and fl-score remain far
inferior.

When researching the ANN method multiple scenarios were evaluated all
throughout the duration of the experiments. The best accuracy results along
with their respective hyperparameter setups are found in table 4, followed by
the specific parameters of the comparison algorithms in tab 5. As mentioned
earlier, the dataset [12] provided the metrics of 5 different coding projects. This
situation differs from the one evaluated in [14] and in [15], where in order to fulfil
the requirement stated by the software house’s executives data from platforms
like GITlab and SonarQube were proposed. One of the approaches evaluated
how would the algorithm perform if it was trained on one project and tested on
another.The detailed results can be seen in tab 3. A different scenario evaluated
how the ANN trained on 4 of the projects would perform on a new project,
as seen in tab 2. Finally a 10-fold cross validation of all the datasets combined
resulted in the performance depicted in tab 1.

Table 4. Best hyperparameter setups found for the ANN’s accuracy, a summary of
multiple gridsearches.

4 hidden layers

Epochs Optimizer Neurons batch _size activation accuracy
6000 adam 10 100 hard_sigmoid 0.647557
4500 rmsprop 7 500 hard _sigmoid 0.665147
4500 rmsprop 7 500 hard sigmoid 0.665147
3 hidden layers

Epochs Optimizer Neurons batch _size activation accuracy
4500 adam 8 500 hard sigmoid 0.663844
4000 rmsprop 5 500 hard _sigmoid 0.663844
4000 adam 5 500 hard_ sigmoid 0.663844
4000 rmsprop 10 500 hard sigmoid 0.669055
4000 adam 10 500 hard _sigmoid 0.665798
5000 adam 10 500 hard_ sigmoid 0.664495
5000 adam 5 1000 hard sigmoid 0.663192
5000 rmsprop 10 1000 hard _sigmoid 0.665798
2 hidden layers

Epochs Optimizer Neurons batch _size activation accuracy
10 rmsprop 5 5 sigmoid 0.644300
1 hidden layer

Epochs Optimizer Neurons batch _size activation accuracy
4500 adam 8 500 hard_sigmoid 0.663844
4000 rmsprop 10 500 hard_sigmoid 0.669055
3000 rmsprop 10 500 hard sigmoid 0.663844
3000 rmsprop 10 500 sigmoid 0.663844
2000 rmsprop 5 200 sigmoid 0.670358

Table 5. Comparison ML algorithms setups

Classifier Name Ensemble size Meta-algorithm Base classifier =~ Max depth

Random Forest 300 Bagging Random Tree 10
AdaBoost 100 Boosting Decision stump
RepTrees 300 Bagging Decision Tree 10

GBT 300 Boosting Decision Tree

Table 6. Comparison of methods on all datasets combined, using 10-fold cross valida-

tion
precision recall fl-score
RandomForest 0.392 0.709 0.505
AdaBoost 0.294 0.765 0.425
Bag of RepTrees 0.308 0.814 0.447

GBT 0.300 0.761 0.431

10

0.7 0.9
|

True Positive Rate
05

0.4

0.3

—— Random Forest

0.2

- Adaboost

01

Bag of RepTree

t,‘ --- GBT

0.0

T T
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

False Positive Rate

Fig. 3. ROC curve obtained for various classifiers: Random Forest, Adaboost, Bag of
RepTrees, Gradient Boosted Trees (GBT).

6 Conclusions

In this paper we tackle the problem of the analysis of difficult software-related
data. In general, such data can be analyzed in order to improve the software
quality, detect faults and bugs or improve programming patterns. However, quite
often the results are tampered by the nature of the data. Hereby, we propose
to use machine learning techniques in order to detect bugs while addressing
the problem of data imbalance. The presented results are comparable to other
approaches, and we currently work to use them in practice on real commercial
data from industrial software products.

7 Acknowledgments

This work is funded under Q-Rapids project, which has received funding from
the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 732253.

Table 7. An example of ANN optimisation results - 3 hidden layers

Epochs Optimizer Neurons batch _size activation ACC

2000 rmsprop 5 200 relu 0.582410
2000 adam 5 200 relu 0.595440
2000 SGD 5 200 relu 0.163518
2000 rmsprop 10 200 relu 0.578502
2000 adam 10 200 relu 0.593485
2000 SGD 10 200 relu 0.327036
2000 rmsprop 15 200 relu 0.553094
References

1.

10.

11.

J. Lo. The implementation of artificial neural networks applying to software reli-
ability modeling. In 2009 Chinese Control and Decision Conference, pages 4349—
4354, June 2009.

. Michal Choras, Rafal Kozik, Rafal Renk, and Witold Holubowicz. A practical

framework and guidelines to enhance cyber security and privacy. In International
Joint Conference - CISIS’15 and ICEUTE’15, 8th International Conference on
Computational Intelligence in Security for Information Systems / 6th Interna-
tional Conference on EUropean Transnational Education, Burgos, Spain, 15-17
June, 2015, pages 485-495, 2015.

Rafal Kozik and Michal Choras. Solution to data imbalance problem in application
layer anomaly detection systems. In Hybrid Artificial Intelligent Systems - 11th In-
ternational Conference, HAIS 2016, Seville, Spain, April 18-20, 2016, Proceedings,
pages 441-450, 2016.

Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery Handbook,
2nd ed. 01 2010.

Ivan Nunes da Silva - Danilo Hernane Spatti Rogerio Andrade Flauzino Luisa
Helena Bartocci Liboni Silas Franco dos Reis Alves. Artificial Neural Networks A
Practical Course. 2017.

Simone Bassis Anna Esposito Francesco Carlo Morabito Eros Pasero. Advances in
Neural Networks. 2016.

Charu C. Aggarwal. Neural Networks and Deep Learning A Textbook. 2018.
Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321—
357, June 2002.

Marek Pawlicki, Michal Choras, and Rafal Kozik. Recent granular computing
implementations and its feasibility in cybersecurity domain. In Proceedings of
the 13th International Conference on Availability, Reliability and Security, ARES
2018, Hamburg, Germany, August 27-30, 2018, pages 61:1-61:6, 2018.

Rafal Kozik, Marek Pawlicki, Michal Choras, and Witold Pedrycz. Practical em-
ployment of granular computing to complex application layer cyberattack detec-
tion. Complezity, 2019:1-9, 01 2019.

Katarzyna Borowska and Jarostaw Stepaniuk. Granular Computing and Param-
eters Tuming in Imbalanced Data Preprocessing: 17th International Conference,
CISIM 2018, Olomouc, Czech Republic, September 27-29, 2018, Proceedings, pages
233-245. 01 2018.

10

12.

13.

14.

15.

Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison
of bug prediction approaches. In Proceedings of MSR 2010 (7th IEEE Working
Conference on Mining Software Repositories), pages 31 —41. IEEE CS Press, 2010.
Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A comparative analysis of
the efficiency of change metrics and static code attributes for defect prediction. In
Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, pages 181-190, New York, NY, USA, 2008. ACM.

Michal Choras, Rafal Kozik, Damian Puchalski, and Rafatl Renk. Increasing prod-
uct owners’ cognition and decision-making capabilities by data analysis approach.
Cognition, Technology €& Work, 2019.

Rafal Kozik, Michal Choras, Damian Puchalski, and Rafal Renk. Q-rapids frame-
work for advanced data analysis to improve rapid software development. Journal
of Ambient Intelligence and Humanized Computing, 10(5):1927-1936, May 2019.

