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Abstract. In this paper we have investigated the fault proneness of the
software source code using artificial intelligence methods. The main con-
tribution lies on improving the data pre-processing step. Before we put
the data into an Artificial Neural Network, are implementing PCA (Prin-
cipal Component Analysis) and k-means clustering. The data-clustering
step improves the quality of the whole dataset. Using the presented ap-
proach we were able to obtain 10% increase of accuracy of the fault
detection. In order to ensure the most reliable results, we implement
10-fold cross-validation methodology during experiments.
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1 Introduction

The development of a reliable software system, especially at a low cost, can be
a significant challenge. The product also has to be market-ready in a reasonable
time. Failure detection and defect proneness prediction become crucial tools for
reliable software creation, helping with decision making and resource allocation.
Various metrics, such as code complexity, or number of revisions can help spot
classes with high probability of bugs. Bug prediction, therefore, is a classifi-
cation problem. Numerous classification methods have been employed to deal
with this challenge, along with Artificial Neural Networks(ANN). While some
researchers are reluctant to employ ANNs for their lack of transparency, however
their prowess in modeling nonlinear functional relationships seem to make them
well suited for the problem of defect prediction [13].

2 State of the Art

Software development is at times an amazingly complex and iterative process.
However research indicates that there are ways to augment the process with
knowledge inferred with known data mining procedures. For example, Yanguang
Shen and Jie Liu conduct a research into the application of Data Mining in
Software Testing and Defects Analysis. The authors bring up the following data
mining methods for defect testing:
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– Association Analysis - an outline of the relations between data sets.

– Cluster Analysis - aggregates data points to form different clusters of fea-
tures; can be used to clarify the patterns of error types, error stages etc.

– Classification of defects - based on an input set and a set of causes of defects,
used to ensure the accuracy of quantitative analysis of software defect.

– Sequence Analysis - used to spot defective software by analyzing the trends
of a time-ordered transaction dataset, allowing for detection of potential
defects in early stages of development.

Some papers warn of the over-reliance on existing tools geared towards soft-
ware assessment. In Assessing the Precision of FindBugs by mining Java Projects
developed at a University by Antonio Vetro, Marco Torchiano and Maurizio
Morisio [1] the authors undertake an assessment of a bug finding tool called Find-
Bugs. Historically, bug finding tools experience a myriad of problems, including
a high number of false positives, detecting bugs only partially, prioritizing the
bugs in a manner not suited for the project at hand and raising the question of
general economic feasibility. The authors hone down on the precision question of
those tools. After a series of tests on data gathered from university Java coding
assignments, the authors conclude that a proper way to use a bug finding tool
is to prioritize the issues report so that the bugs that are most likely to lead
to a defect are on top of the list. Almost 30% of the reported issues are bad
predictors and should most likely be best left untampered with [1]. In a fairly
old paper (2010), Applying Data Mining Techniques in Software Development
authors survey the feasibility of using Data Mining principles to augment the
software creation process. The identified process consists of Understanding and
Analysis of users needs, Interpretation of data and noise removal, preprocessing
of data and choosing a proper algorithm, creating a mining model, evaluating
and interpreting the model. The paper briefly delves into Frequent Itemsets
Mining, Timing Mining, and Classification. Frequent Itemsets Mining is used to
uncover defect detection rules, and then association rules create a process model
with Apriori and FP2 growth algorithms. The execution timing is briefly touched
upon in Timing Mining part as the authors conclude that the technology was
then in its infancy. Classification methods are used to predict unknown class
label object class [6]. The most recent evaluations of the subject delve into the
applications of the Data Mining principles to a far greater extent. For example,
in [9] the authors propose a mining approach centred on figuring out the soft-
ware vulnerability characteristics based on open source vulnerability datasets -
Common Vulnerability and Exposure (CVE), Common Weakness Enumeration
(CWE) and National Vulnerability Database (NVD). Vulnerability in this ar-
ticle is understood as any weakness in software or hardware logic that results
in a negative effect on the confidentiality, integrity or availability of the system
when exploited. The illustrated procedure performs the extraction, identifica-
tion, and mining of the crucial characteristics of software vulnerabilities. The
authors relate the probability of a vulnerability occurrence with the chance of a
distinct vulnerability category or source code containing the root of the problem
explained in the report. This allows to create a knowledge database and to form
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a procedure to mine the features of software vulnerabilities. After the extraction
and identification of features, the approach proceeds to execute the mining by
specifying the mining rules. Association rules are used as a determinant of all
rules that are present in the database, which fulfil a certain confidence condition.
Classification rules are used to designate a minute set of rules in the database
which allows forming an accurate classifier. The classifiers performance is eval-
uated by taking inventory of two metrics - precision and recall, where precision
is the rate of true positives to all positives, and recall is the rate of true posi-
tives to true positives augmented with the number of false negatives. After data
preprocessing a dictionary of vulnerabilities is created, and textual indicators
are listed. The method uses Frequency-Inverse Document Frequency (tf-idf) to
assign weights to the textual indicators. Those are categorized as essential and
non-essential vulnerabilities. The study demonstrates the effectiveness of the ap-
proach, noting vast improvement of the Data Mining approach over the manual
method, with reported recall around 70% and precision around 60% [9]. In [17]
authors target detecting fault-proneness in software classes. Fault proneness is
a quality attribute in software development that lends itself to the prediction
of potential software faults via machine learning methods. The authors aim to
establish a link between object-oriented indicators and fault proneness at the
class level. An adaptive neuro-fuzzy inference system (ANFIS) is used, as it
amalgamates the benefits of the Fuzzy Inference System and the Artificial Neu-
ral Network approaches, along with a Levison-Marquardt updating. Six metrics
serve as input, Weighted Methods/Class, Number Of Children, Depth of Inher-
itance, Response For a Class, Coupling Between Objects and Lack of Cohesion
in Methods. The system returns a prediction rate of the class fault-proneness.
The authors claim the effectiveness of predicting fault-prone classes at a level
of 80% correct classifications and the ability to discover 90% of faulty classes
in the best case scenario [17]. One more method fusing fuzzy approaches with
data mining is considered in [2]. Multivariate analysis of variance MANOVA is
a method of figuring out the effect multiple independent variables have on one
dependent variable which uses covariance. The Gini Algorithm is used to create
classification and decision trees, and fuzzy logic handles modelling uncertainty
by employing partial memberships. The proposed approach uses a mix of those
methods on the NASA dataset to detect possible software defects. MANOVA
identifies the attributes that have the most impact on defects, and the remaining
ones are disregarded. The method develops a fuzzy model for this concentrated
dataset. The range values of membership functions are calculated with the Gini
Algorithm. The resulting model is successfully tested and achieves an accuracy
of 86% in identifying a non-defective software [2].

3 Bug Prediciton Dataset

The dataset [8] used constitutes an accumulation of software development met-
rics. As the authors explain themselves, the ambition of the dataset is to establish
a benchmark to test various bug prediction procedures and to judge weather a
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new routine is an enhancement over the preceding ones. The set provides fea-
tures derived from source code metrics along with historical and process data.
A number of bugs and severity of them is also provided. The dataset allows for
defect prediction at the class level, therefore the data could be aggregated into
package or subsystem level by aggregating class metrics.

The dataset accomodates information about 5 projects, these are: Eclipse
JDT Core, Eclipse PDE UI, Equinox Framework, Lucene and Mylyn. Every
project comes with a number of associated metrics, for the use of this work the
change log data in the form of comma separated files was used, with features
suggested by [15].

4 Principal Component Analysis

The process of finding a feature vector which contains the essence of the data,
but with a reduced set of features is called dimensionality reduction. In other
words, it is the challenge of building an n-dimensional projection that consti-
tutes the representation of the data in a k-dimensional space. Besides the ob-
vious computational benefits, dimensionality reduction techniques help prevent
high dimensionality of input, which induces the phenomenon called ’curse of
dimensionality’. The phenomenon causes various machine learning classifiers to
underperform in when the number of dimensions inflates. [14] This comes with
an exponential increase of samples needed for the classifiers to be accurate.

Principal Component Analysis (PCA) is an established method of dimen-
sionality reduction. Essentially PCA finds the projection of the data in which
the data’s variance is maximised. In a classic example given in [14], if the data is
distributed over a line, performing PCA would quickly inform that the variance
over all the other directions is 0, therefore the features responsible for those
distributions can be discarded. In this case despite the data-gathering process
providing a strong signal in one direction, the data usually contains noise in nu-
merous features. If the strength of the signal overbears the noise to a sufficient
extent, extracting the projection which explains maximum variance has a signif-
icant chance of containing the essence of the data. The process can be repeated
in order to find the next dimension with the largest variance.

5 Data Imbalance

A set is considered imbalanced when the classes are not uniformly represented.
This seemingly trivial matter can cause machine learning algorithms to fall short
of the expected performance. An example brought to attention in [4] considers a
situation where a mammography dataset consists of no more than 2% of abnor-
malities. In that situation a classification of all the samples to the majority class
would yield an accuracy of 98%, completely missing the point of constructing
a machine learning algorithm detecting the minority class. With the prevalence
of dataset imbalance in most of real-world research problems, two mainstream
approaches to dealing with the challenge have emerged. These are different ways
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of data resampling, either by subsampling the majority class or by oversampling
the minority class, and attaching a specific cost function to the training samples
[4].

Additionally, recognising the aforementioned issue with accuracy as a perfor-
mance metric a range of other methods of determining the efficiency of machine
learning algorithms were adopted.

6 Artificial Neural Network

Artificial Neural Networks (ANN) are a versatile tool for modeling. Applied
in a wide array of uses, they are a standard utility for data mining, providing
classification, regression, clustering and time series analysis abilities. The premise
of an ANN is that it mimics the learning capabilities of a biological neural
network, with emphasis on the properties of neural networks found in human
brains, however abstractly simplified [14].

The astonishing modeling ability of ANN as applied to pattern recognition
stems from its high adaptability to data. This universal approximation ability
is immensly valuable when dealing with real-world data, when the data is abun-
dant, but the patterns concealed in the data are yet to be discovered.

The weights of the ANN are revised by the algorithm with the survey of con-
secutive data instances, enabling gaining knowledge from experience. Not only
can the network attain the relations between the variables, but it can generalize
to a sufficient extent so as to allow adequate performance on unforeseen data
[7]. An Artificial Neural Network is essentially like fitting a line, plane, or hyper-
plane though a dataset, defining the relationships that perhaps exist among the
features [16].

An ANN with only one computational layer is frequently called a perceptron.
This simplest form of ANN contains an input and an output (computational)
layer. The input layer provides the data to the output layer, where computations
are performed. Said input layer consists of d nodes that represent d features
X = [x1...xd] and edges of weight W = [w1...wd]. The output neuron computes

W ·X =
∑d

i=1(wixi). The binary prediction of either -1 or 1 is a mapping based
on the sign of the real value of the result of that computation. Adding bias b
helps the model perform in environments with high class distribution imbalance.
Thus, the prediction of ŷ is the result of the equation 1.

ŷ = sign{W ·X + b} = sign
{ d∑

i=1

wixi + b
}

(1)

In this example, the sign plays the role of the actvation funciton Φ(v). Different
activation functions will be used in ANNs with multiple hidden layers, usually
either the Rectified Linear Unit (ReLU) or Hard Tanh is utilised for the ease in
training multilayered networks. The error of the prediciton can be expressed as
the difference between the real-life test value and the predicted value, namely
E(X) = y − ŷ. If the error is different than 0 the weights should be revised.
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It becomes the aim of the perceptron to minimise the least-squares between y
and ŷ, for all instances belonging to dataset D. This objective is called the loss
function (Equation 2). ∑

(X,y)∈D

(y − sign{W ·X}) (2)

The loss function is defined over the whole dataset X, the weights W are updated
with the learning rate α, and the algorithm iterates over the entire dataset until
it converges. This procedure is refered to as stochastic gradien-descent, also
expressed by equation 3 [3].

W ⇐W + αE(X)X (3)

A multilayer neural network features multiple computational layers, called the
hidden layers. The name refers to the black box nature of those layers, as the
computations are obscured from the users point of view. The data is fed from the
input layer to the successive layer with adequate computations along the way,
and then fed to another layer and so on until it reaches the output layer. This
mechanism is referred to as the feed-forward neural network [3]. The particular
count of neuron nodes in the foremost hidden layer usually deviates from the
number of inputs. The number of nodes and the number of layers depends on
the complexity of the required model and on the availability of data [7]. While
there are some instances where using a fully-connected layer of neurons is the
norm, utilising hidden layers with the number of nodes below the number of
inputs allows for a loss in representation, which actually betters the network’s
performance. This might come as a result of eliminating the noise in data [3].

Constructing a network with too many neurons tends to lead to overfitting.
Overfitting, or overtraining, means that the model adjusted itself to very specific
patterns of the training dataset, and therefore, not being general enough, will
perform poorly on new, unforseen data [3].

7 Cross-Validation

The models created by various machine learning algorithms, including the ones
utilised in this paper, come with a number of risks influencing their perfor-
mance, including overfitting, or selection bias. The models experiencing those
problems can perform outstandingly on the test set, but severely underperform
when deployed on unforseen data. To mitigate this risk the models undergo
a cross-validation procedure. K-fold cross-validation, or rotation estimation, is
more effective in evaluating the effectiveness of machine learning models than
simple dataset split methods, like random sub-sampling. The final result is an
average of all the measures across all the folds, therefore it is a more fitting
assessment of the used methods effectiveness. The k parameter in the very name
of the procedure stands for the number of folds the method will use. A fold
can be defined as a randomly sampled partition of the data, both equal in size
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and mutually exclusive with all the other partitions. The partitions are rotated
as the test set for validating the model, with the remaining subsets constitute
the training set. After repeating the procedure k-times the the evaluation scores
are averaged. The most common cross-validation procedure involves k=10 folds,
hence the name, 10-fold cross-validation. It is the method utilised in works [11,
10].

8 Experiments

The experiment was conducted using the 10-fold cross-validation methodology.

Fig. 1. The process pipeline

The whole process performed in the research was presented in 1. The [8]
dataset consists of 5 projects and an array of metrics dispersed throughout sep-
arate files. The files use comma-separated-values (CSV) format. That is a stan-
dard. For this particular approach, the bug-metrics, change-metrics, complexity-
code-change and single-version-ck-oo datasets were used. Firstly, the datasets are
pooled together. Since the metrics are gathered at the class-level, the datasets
are merged with regard to the classname column. This results in a single, com-
prehensive dataframe containing vectors of 42 features (columns), the dependent
variable and the classname, for each of the 5 projects in the dataset. Then those
dataframes are concatenated to form an aggregare of all five projects. Thus, the
dataframe containing the final dataset contains 44 columns and 5371 rows, out
of which 853 are classes with with after-release reported bugs. At this stage of
research the algorithm will perform binary classification, deciding either if the
class will be faulty, or not. For that reason the dependent variable is changed to
a Boolean, with Y > 0 resulting in a Y = True. Secondly, after the dataframe
has been formed, the data is scaled and a Principal Component Analysis is per-
formed. The variance test reveals that in this dataset 30 features account for
99.2% of the variability. numberOfVersionsUntil - 0.00172. Thus, the feature
vector can be safely reduced to 5, instead of 42 features. After performing PCA
the bugged classes and the clear classes are manually divided, and then the clear
classes are clustered using a k-means algorithm with the number of centroids
matching the number of bugged classes. This balances the dataset, preventing
selection bias.

Data prepared in this way is concatenated again, and the rows are randomly
mixed. The dataset is then fed to an Artificial Neural Network, with 30 nodes
on the input layer, two hidden layers - one fully connected, one with 15 nodes,
and a single output node.
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9 Results

The [8] datasets for all the projects were utilised. The dataset provides 42 fea-
tures, 30 of witch were chosen through performing PCA without impacting the
prediction accuracy. In the future data collected from tools such as GitLab or
SonarQubeThe will be utilised, as presented in [12]. The data was severely unbal-
anced with collective 853 examples of classes with bugs in a total of 5371 records,
constituting 15,89% of the dataset. The Artificial Neural Network (ANN) classi-
fied strongly in favour of the majority class, therefore two data balancing strate-
gies were evaluated. A subsampling approach by matching the number of bug
records with the same exact number of randomly picked samples of the clear
dataset yielded and average accuracy of 0.553 in a 10-fold cross-validation test.
The clustering approach achieved an accuracy of 0.643, proving an almost 10%
point increase in accuracy. Furthermore, we have noticed that the classifier relied
heavily on the bug metrics features. Eliminating all the columns which referred
to bugs found before release resulted in the ANN of improved precision and re-
call with similar accuracy of 0.656. In Table 1 and Table 2 some more obtained
results were presented, where:

– Precision - Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations.

– Recall (Sensitivity) - Recall is the ratio of correctly predicted positive ob-
servations to all the observations in the actual class.

– f1-score is expressed with Eq. 4.

f1− score =
2 ·Recall · Precision
Recall + Precision

(4)

Table 1. Model including the bug metrics

precision recall f1-score support

False 0.62 0.71 0.66 87
True 0.65 0.55 0.59 84

micro avg 0.63 0.63 0.63 171
macro avg 0.63 0.63 0.63 171

weighted avg 0.63 0.63 0.63 171

10 Conclusions

This paper evaluated the use of data-balancing methods in conjunction with
artificial neural networks for the recognition of fault-prone software classes based
on the bug prediction [8] dataset. There is room for future research in this area, in
all the touched-upon aspects. Firstly, in order to fulfil the requirement expressed
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Table 2. Model not including the bug metrics

precision recall f1-score support

False 0.72 0.63 0.67 84
True 0.68 0.76 0.72 87

micro avg 0.70 0.70 0.70 171
macro avg 0.70 0.69 0.69 171

weighted avg 0.70 0.70 0.69 171

by software house’s senior staff to improve the understanding of the developed
projects and improve their ability to plan and assign tasks and sprints in rapid
software development processes data from platforms like GITlab and SonarQube
should be utilised, as seen in [5]. There is room for improvement both in the
clustering procedure, and the ANN architecture. However, the current results are
promising, and we are already working on improving the presented algorithm.

11 Acknowledgements

This work has received funding from the European Unions Horizon 2020 research
and innovation programme under Grant agreement no. 732253. We would like
to thank all the members of the Q-Rapids H2020 project consortium

References

1. M. Torchiano A. Vetro’ and M. Morisio. Assessing the precision of findbugs by
mining java projects developed at a university. In Second International Conference
on Intelligent Computation Technology and Automation, Changsha, Hunan, pages
110–113. 7th IEEE Working Conference on Mining Software Repositories (MSR
2010), 2010.

2. M. F. Adak. Software defect detection by using data mining based fuzzy logic. In
Sixth International Conference on Digital Information, Networking, and Wireless
Communications (DINWC), Beirut, pages 65–69, 2018.

3. Charu C. Aggarwal. Neural Networks and Deep Learning A Textbook. 2018.

4. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16(1):321–
357, June 2002.
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