
Towards Automated Data Integration in Software Analytics
Silverio Martínez-Fernández

Fraunhofer IESE
silverio.martinez@iese.fraunhofer.de

Petar Jovanovic
Universitat Politècnica de Catalunya, BarcelonaTech

petar@essi.upc.edu

Xavier Franch
Universitat Politècnica de Catalunya, BarcelonaTech

franch@essi.upc.edu

Andreas Jedlitschka
Fraunhofer IESE

andreas.jedlitschka@iese.fraunhofer.de

ABSTRACT
Software organizations want to be able to base their decisions on
the latest set of available data and the real-time analytics derived
from them. In order to support “real-time enterprise” for software
organizations and provide information transparency for diverse
stakeholders, we integrate heterogeneous data sources about soft-
ware analytics, such as static code analysis, testing results, issue
tracking systems, network monitoring systems, etc. To deal with
the heterogeneity of the underlying data sources, we follow an
ontology-based data integration approach in this paper and define
an ontology that captures the semantics of relevant data for soft-
ware analytics. Furthermore, we focus on the integration of such
data sources by proposing two approaches: a static and a dynamic
one. We first discuss the current static approach with a predefined
set of analytic views representing software quality factors and fur-
ther envision how this process could be automated in order to
dynamically build custom user analysis using a semi-automatic
platform for managing the lifecycle of analytics infrastructures.

CCS CONCEPTS
• Software and its engineering → Maintaining software;

KEYWORDS
Data integration, real-time enterprise, ontology, software analytics
ACM Reference Format:
Silverio Martínez-Fernández, Petar Jovanovic, Xavier Franch, and Andreas
Jedlitschka. 2018. Towards Automated Data Integration in Software An-
alytics. In International Workshop on Real-Time Business Intelligence and
Analytics (BIRTE ’18), August 27, 2018, Rio de Janeiro, Brazil. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3242153.3242159

1 INTRODUCTION
Nowadays, the huge amount of data available in companies has
increased their interest in applying the concept of "real-time en-
terprise"1 by using up-to-date information and acting on events as
1https://www.gartner.com/technology/research/data-literacy/

This is an Author's Accepted Manuscript of a paper to be published by ACM in the 
12th International Workshop on Real-Time Business Intelligence and Analytics 
(BIRTE ’18) at VLDB'18. The final authenticated version will be available online
https://doi.org/10.1145/3242153.3242159

they happen. In this paper, we envision automated support for the
real-time enterprise concept for software organizations by means
of applying recent approaches to facilitate data integration tasks.

Currently, software organizations want to be able to base their
decisions on the latest set of available data and the real-time analyt-
ics derived from them. The software development process produces
various types of data such as source code, bug reports, check-in
histories, and test cases [23]. The data sets not only include data
from the development (e.g., GitHub with over 14 million projects),
but also millions of data points produced per second about the
usage of software (e.g., Facebook or eBay ecosystems). All this data
can be exploited with “software analytics”, which is about using
data-driven approaches to obtain insightful and actionable infor-
mation at the right time to help software practitioners with their
data-related tasks [9]. This improves information transparency for
diverse stakeholders. Bearing this goal in mind, we integrate these
different data sources as a necessary first step in making this data
actionable for decision-making. The integration becomes neces-
sary because the inherent relationships in the data influencing the
overall software quality are not obvious at first sight.

Despite its key role, the integration of different software ana-
lytics data still presents challenges due to the heterogeneity of the
data sources. Not only do data come from sources carrying differ-
ent types of information, but the same information is also stored
in heterogeneous formats and tools. Big Data analytics involves
the ingestion of real-time operational data into large repositories
(e.g., data warehouses or data lakes), followed by the execution of
analytics queries to derive insights from the data, with the final
goal of performing business actions or raising alerts [6]. In a recent
systematic review, data integration and final data aggregation were
reported as part of the remaining challenges in Big Data analyt-
ics [19]. At the same time, another review in software analytics
reported that most of the current approaches are still analyzing
only one artifact [2], thus not focusing on integrating data from
different sources and getting a holistic view. Thus, further research
is needed to facilitate the integration of data sources for software
analytics driven by the real information needs of end users.

To overcome the heterogeneity of software analytics data coming
from different sources, we follow an ontology-based data integra-
tion approach in this paper; in particular, we intend to contribute:
(a) the definition of an ontology capturing the semantics of relevant
data for software analytics; (b) a current static approach for the
integration of heterogeneous data sources given a set of predefined
analytic views representing software quality factors; and (c) an
envisioned approach for the dynamic integration of heterogeneous

https://doi.org/10.1145/3242153.3242159
https://doi.org/10.1145/3242153.3242159


BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil Silverio Martínez-Fernández, Petar Jovanovic, Xavier Franch, and Andreas Jedlitschka

software analytics data, guided by the specific analytical needs of
end users (i.e., information requirements).

The paper is structured as follows: Section 2 presents the related
work. Section 3 presents an ontology for software analytics. Section
4 presents the implementation of a static approach to implement
the integration. Section 5 discusses how the integration could be
done dynamically. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Software analytics and software quality
Contrary to the availability of data and its transparency in open
source software, tool support for data integration for private com-
panies in commercial systems is just emerging. For instance, we
can find some large-scale software companies with their own pro-
prietary development environments, such as Codemine (a propri-
etary software analytics platform) [7], Codebook (a framework for
connecting engineers and their work artifacts) [4] by Microsoft,
and Tricorder (a program analysis platform aimed at building a
data-driven ecosystem) [18] by Google. Still, these platforms are
proprietary and not widely used by others. In addition, companies
like Kiuwan, Kovair, and Tasktop have recently started offering
software and services for software analytics2. Furthermore, very
recent research tools are CodeFeedr [21] and Q-Rapids [16]. Despite
these efforts, there are still challenges for companies developing
commercial systems to understand how to integrate heterogeneous
data sources for software analytics.

Regarding software quality and quality models, a multitude of
software-related quality models exist that are used in practice, as
well as classification schemes [13]. One example is the ISO/IEC
25010 standard [1], which determines which quality aspects to
take into account when evaluating the properties of a software
product. A more recent example is the Quamoco quality model
[22], which integrates abstract quality aspects and concrete quality
measurements. Nowadays, having operationalized quality models
offering actionable analytics from different data (system, process,
and usage) is still a challenge.

2.2 Automating data integration tasks
Data integration is a well-studied area aiming at facilitating trans-
parent access to a variety of heterogeneous data sources for the
end user [15]. To automate data integration tasks, the use of Se-
mantic Web technologies has been proposed [3]. In particular, we
are interested in the use of an ontology for capturing the semantics
of heterogeneous data sources due its machine-readable format
and the inference capabilities it provides [5]. The automatic cre-
ation of data integration flows has been studied from two main
perspectives: 1) starting by analyzing the available data sources
(i.e., supply-driven; e.g., [11]), and 2) starting from the analytical
needs of end users and further mapping them to the available data
sources (i.e., demand-driven; e.g., [10]). Others also deploy a hybrid
approach combining the previous two ideas [8, 12].

In this paper, we also envision a hybrid approach for integrating
data sources related to software analytics, taking into account the
real analytical needs of end users, which may vary over time.

2Kiuwan (www.kiuwan.com), Kovair (www.kovair.com), Tasktop (www.tasktop.com)

3 INTEGRATING DATA SOURCES FOR
SOFTWARE ANALYTICS

In this section, we present our software analytics use case that we
will use throughout this paper.

3.1 An ontology for software analytics
We introduce an ontology that captures the semantics of relevant
data for software analytics (see Fig. 1). In the ontology, each class
represents an entity of the software analytics domain. For instance,
the class Issue represents the issues from issue tracking systems.
The ontology is abstract in order to enable generalization and ap-
plicability in different software projects. Therefore, the technolo-
gies used could differ among projects, whereas the concepts are
present in most software development projects. For instance, for
issue tracking systems, different companies may use different tools
(e.g., Redmine, Jira, or GitLab), but all of them use issue tracking
systems as a software development practice. Note that several ap-
proaches also propose automated generation of a domain ontology
from the desired data sources to support data integration tasks (e.g.,
[20]).

The classes of the ontology in Fig. 1 represent data coming from
the system either at development time or at runtime. For the sake
of simplicity, we omit further ontology details (e.g., datatype prop-
erties) in Fig. 1, but explain the main process of how the ontology is
built. During software development, we find data about the project
and the development, which can be mapped, respectively, to the
topics of improving software development process productivity and
software system quality presented by Zhang et al. [23]. At runtime,
we find data about the system behavior and its usage, which can be
mapped to the topic of improving the software users’ experience.

First of all, the project owner assigns Persons to a certain Project,
by assessing their Tech. Experience with Technologies. When the
project starts, the Issues are defined in an issue tracking system.

Figure 1: An ontology capturing the semantics of relevant
data for software analytics



Towards Automated Data Integration in Software Analytics BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

During sprint planning, the product owner indicates the issues to
be resolved in the current Iteration (a.k.a. sprint), and estimates the
effort with story points. Therefore, it is known to which iteration(s)
an issue is assigned. After sprint grooming and planning, the team
works on issues, sending Commits (a.k.a. changes).

Commits include Documentation (such as how-to documents or
architectural descriptions) and/or Source Code. After a commit is
performed, automatic module and system Builds containing Tests
are triggered. Therefore, the Tests Results can be associated with
a Commit. Also, after a commit, Static Code Analysis is automati-
cally triggered, producing Code Quality Measures (e.g., cyclomatic
complexity, lines of code) and checking Quality Rule Violations.
Code Reviews are done over a Code Version (a.k.a. branch) instead
of intermediate results (i.e., single commits), requiring the results
of automatic build and tests, as well as code quality measures and
quality rules violations from static code analysis. This way, we
know under which conditions a code review is accepted or rejected
(e.g., thresholds for code quality measures or test results). If the
commit is accepted, it is moved to the main line of a source Code
Version. The approved source code is heavily tested in nightly builds
(including stress testing and stability testing).

After successful nightly builds, the product owner may decide
to create a new Release. When the new release is in use, runtime
data becomes necessary: Customer feedback (normally relating to
bugs and system functionalities) and Logs (from both end users and
executed tests).

Besides the classes, the ontology contains meaningful associa-
tions among its classes (see arrows in Fig. 1). For instance, Commits
can be integrated with Issues when the description of the Commits
includes the “issue id” of the related issues.

3.2 Information requirements for end users
Analyzing information from single classes is not sufficient for rea-
soning about quality aspects of the software system, process, or
usage. Previous research shows that relevant quality aspects (e.g.,
maintainability and reliability) contain metrics from heterogeneous
data sources, i.e., from several classes of the ontology [17]. For this
reason, we propose information requirements that consider several
classes and help to reason over multiple metrics impacting a quality
aspect. Below, we give two examples of information requirements.

Information requirement 1 (IR1). Analyze the last release of
the software product, per module, ordered by changes, quality rule
violations, code quality measures (e.g., complexity, comments, and
duplications). The goal of IR1 is to improve the code quality of the
modules in the next release. The different modules are studied with
respect to changes, violations, and code metrics as measurements.
Examples of action points to be taken by product owners are: allo-
cating time in the next release to reduce the quality rule violations
in a module, or deciding to refactor a highly changed module to
make it more stable.

Information requirement 2 (IR2). Examine the reliability of a
release of the software product in terms of bugs found during testing
and errors occurring at runtime, ordered by their resolution time.
The goal of IR2 is to improve the bug detection of tests. Examples
of action points are: improving the test coverage of a unit test,
creating further unit tests for a buggy module, testing the software

in different contexts, and canceling a release with more bugs than
the previous one.

The next two sections report two approaches for data integration
using IR1 and IR2 as examples, respectively.

4 SOFTWARE ANALYTICS: CURRENT STATIC
APPROACH

This section explains an implementation for real-time data integra-
tion done in the Q-Rapids tool [16]. The data flow can be summa-
rized in three steps.

First, during data ingestion, data is gathered during development
and at runtime from different data sources. This raw data is ingested
into the data stores modeled on the basis of the ontology depicted in
Fig. 1 and implemented as Elasticsearch indexes. As an example, for
IR1, data is gathered from static analysis tools and version control
systems and mapped to the following classes: Code quality measure,
Quality rule violation, Commit, Release.

The high velocity at which data is coming into the system re-
quires the use of Big Data technologies3 for ingestion and analysis
[16]. For this reason, the data from each source is ingested with
a customized Apache Kafka connector, where the data source is
the producer and the connector is the consumer. Then the data
is pushed to an index in Elasticsearch, which represents the class
of the ontology. For instance, for Quality rule violation, there may
be multiple connectors for the heterogeneous tools (e.g., Sonar-
Qube, CodeSonar, Coverity). The class Quality rule violation can be
integrated with others such as Person (author of the line of code
violating a rule), Code version (component and line of code fields),
and Commit (date field), among others.

Second, during data integration and aggregation, two activities
are performed to enable the subsequent generation of alerts. In the
first activity, quality metrics are computed from the ingested data
and further interpreted with a value from 0 to 1. For instance, the
assessed metric ‘‘Fulfillment of critical/blocker quality rules” gives a
percentage of the files in the source code without critical or blocker
quality rule violations (see [17] for details). When the necessary
assessed metrics from several data sources are computed, they are
stored in another data store as different Elastic indexes. Then the
second activity starts. The assessed metrics are aggregated into
product factors according to their weight. The weight indicates the
relative importance of the assessed metric for the product factor.
For instance, for IR1, the following assessed metrics are needed:
Non-complex files, Fulfillment of critical/blocker quality rules, and
Highly changed files. Following the example, these assessed metrics
are aggregated into the Code quality and Blocking code product
factors, as defined in the Q-Rapids quality model [17].

For the implementation, the predefined assessed metrics are
translated into Elastic queries, including the formula as well as
the execution frequency. Then the query pipeline is executed to
compute the assessed metrics and product factors.

Third, product factor alerts can be raised for several reasons,
such as a ’bad’ value or prediction of a (normalized) product factor.
Therefore, alerts act as traffic lights for product factors, only redi-
recting stakeholders to predefined dashboards when needed. These

3Apache Kafka for ingesting (https://kafka.apache.org/), Elasticsearch and Kibana of
the Elastic stack for storing and visualizing (https://www.elastic.co/products)



BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil Silverio Martínez-Fernández, Petar Jovanovic, Xavier Franch, and Andreas Jedlitschka

Figure 2: Example of raw data visualization for IR1

dashboards contain real-time data to support end users in solving
the quality aspect monitored by the product factor.

These dashboards are implemented as Kibana objects (following
Kibana terminology, they are dashboards consisting of visualiza-
tions and searches). As an example of IR1, an alert for blocking code
can be raised because this product factor has been decreasing in
the last sprints. Then the user is redirected to the dashboard shown
in Fig. 2, with the following data about the selected release:

• “Modules vs. Function Complexity”: It shows a heat map
with the average function complexity of the modules. Users
can drill down and see a list of files that should be checked.

• “Issue Resolution per Week” and “Total Lines of Code”: By
showing the velocity of the development team based on the
resolution of issues and the evolution of the size of the code,
the users can see if they are correlated with blocking code
problems.

• “Issues per Severity” and “Blocker Issues”: This shows the
quality rule violations according to severity. In addition, a list
of blocker and critical violations is shown that we suggest
should be taken care of. Within this list, the user can filter
the violations (e.g., rules of the type “code smell”). Also, by
opening them, the user sees the module, line of code, and
an explanation of the code smell problem. Therefore, after
an alert has been raised, the user can see the details of each
violation in order to take actions in real time.

5 TOWARDS AUTOMATED SOFTWARE
ANALYTICS

In the previous section, we saw how the integration of data from
multiple sources can be beneficial for extracting actionable analytics
for the software process, system, and usage. However, as can be seen,
such integration requires considerable manual effort on the part
of the designer to integrate, transform, and prepare the data to be
plugged into the desired analytics or visualization tool for further
exploitation. Furthermore, given that information requirements
may often be ambiguous and/or incomplete, the above process may
undergo several rounds of reconciliation and redesign until the real
information needs of an end user are finally met.

Considering that the analytical needs of different stakeholders,
such as team leaders, project managers, or developers, are different
and can, moreover, change dynamically over time, the proposed
manual process may become an overburdening bottleneck.

Therefore, we envision a system that would apply and extend
existing approaches in order to automate the process of building
data integration flows for the field of software analytics. In partic-
ular, one such system, called Quarry [12], provides an automated,
end-to-end solution for assisting the users of various technical
skills in managing the design and deployment of analytical in-
frastructures, i.e., target data stores and data-intensive flows like
extract-transform-load (ETL) processes. Quarry starts from high-
level information requirements (e.g., IR1 and IR2 in Section 3.2) and
semi-automatically generates target data stores and a data flow to
integrate data from different data sources and prepare them for
further exploitation.

For instance, a user interested in examining the reliability of a
release in terms of issues of the type bugs found during testing and
errors occurring at runtime detected in logs (see IR2 in Section 3.2)
would pose such a requirement by selecting the ontological concepts
in the graphical tool and adding additional query information.

Figure 3: Identified ontological concepts (i.e., classes and
properties) for IR2

Looking at the ontology in Fig. 1, the user can easily express such
a requirement in his/her own vocabulary using Quarry’s graphi-
cal tool, and hence Quarry will identify the ontological concepts
requested by the user (i.e., Release, Issue, Issue Type, Test results,
Log Errors; see Fig. 3). Moreover, the user can express restrictions
regarding the given concepts (e.g., issue being of the type “bug”)
and aggregations (e.g., count the issues). Starting from the identi-
fied concepts, Quarry explores the ontology and finds the paths
through which such concepts can be related. Notice that in order
to satisfy the summarizability properties [14], which are needed to
correctly answer the posed requirement, these paths must respect
multidimensional integrity constraints (i.e., have “to-one” cardinali-
ties). Thus, the selected paths are shown in Fig. 3. Going from here,
Quarry extracts the subset of ontology concepts needed to answer
the given requirement (see Fig. 4(a)), and generates the schema for
the target data store (Fig. 4(b)).



Towards Automated Data Integration in Software Analytics BIRTE ’18, August 27, 2018, Rio de Janeiro, Brazil

Issue Commit

Code 
version

Code 
review

Release
Test

results

Log
Error

Issue
Type

Issue Release

Test
results

Log
Error

Issue
Type

(a) (b)

Figure 4: (a) Extracted ontology subset, and (b) generated
schema of the target data store

In the background, Quarry also generates a complete data flow
at the same time, which (1) extracts data from different data sources
to which the identified ontology concepts map; (2) integrates these
data following the identified paths in the ontology (by means of
performing joins among the mapped data); and, finally, (3) ap-
plies restrictions (e.g., Issue Type = “bug”) and aggregations (e.g.,
count(issues)) that the user may have expressed through his/her
requirement.

To make all this work, Quarry also provides a deployment mod-
ule, which can be extended to translate the generated constructs
into the desired formats ready for deployment. On the one hand,
the target data store schema can be translated either into a set of
standard database tables implementing relational OLAP or into a
set of Elasticsearch indexes as seen in the previous section. On the
other hand, a data flow can be represented either as an ETL process
implemented as a set of SQL views or in a proprietary format of
an ETL tool (e.g., Pentaho Data Integration PDI), or as a query for
immediately retrieving the data (e.g., SQL or Elasticsearch).

Finally, by deploying the generated analytical infrastructure (i.e.,
target schema and corresponding data flow), the system is ready
to integrate and transform the input data coming from different
data sources and to store it following the schema model in order
to satisfy the user’s information needs and prepare the data for
further exploitation (e.g., real-time data visualization; see Figure 2).

6 CONCLUSIONS AND FUTUREWORK
The automatic integration of data from different sources is still
a challenge for the software analytics domain. In this position
paper, we defined an ontology capturing the semantics of software
analytics data sources. Furthermore, we showed the current static
approach to data integration in the Q-Rapids tool [16]. Finally, we
envisioned a dynamic approach for the generation of dashboards
with actionable analytics defined by the end users.

In the dynamic approach, the end users could, based on their
own analytic needs, easily build data integration flows in order to
prepare software analytics data to be plugged to external analytical
tools. This will enable end users to explore and understand holistic
software quality aspects by transparently considering different
sources of information.

An immediate future direction is to conduct a detailed case study
on applying automated approaches like Quarry [12] to the software
analytics use case, with the aim of validating the benefits envisioned
in this position paper.

ACKNOWLEDGMENTS
We thankAxelWickenkamp for the implementation of theQ-Rapids
tool and Sonnhild Namingha for proofreading the paper. This work
was supported by the Q-Rapids project (H2020, No. 732253) and the
ERCIM Fellowship Programme.

REFERENCES
[1] ISO/IEC 25010. 2011. Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – System and software quality
models. https://www.iso.org/standard/35733.html

[2] Tamer M. Abdellatif, Luiz F. Capretz, and Danny Ho. 2015. Software Analytics to
Software Practice: A Systematic Literature Review. BIGDSE@ICSE, 30–36.

[3] Alberto Abelló, Oscar Romero, Torben Bach Pedersen, Rafael Berlanga, Victoria
Nebot, María J. Aramburu, and Alkis Simitsis. 2015. Using Semantic Web Tech-
nologies for Exploratory OLAP: A Survey. IEEE Trans. Knowl. Data Eng. 27, 2
(2015), 571–588.

[4] Andrew Begel, Khoo Yit Phang, and Thomas Zimmermann. 2010. Codebook.
ICSE, 125–134.

[5] Diego Calvanese, Martin Giese, Dag Hovland, and Martin Rezk. 2015. Ontology-
Based Integration of Cross-Linked Datasets. In ISWC. 199–216.

[6] Badrish Chandramouli. 2015. Building Engines and Platforms for the Big Data
Age. In BIRTE@VLDB. 23–37.

[7] Jacek Czerwonka, Nachiappan Nagappan,Wolfram Schulte, and BrendanMurphy.
2013. CODEMINE: Building a software development data analytics platform at
Microsoft. IEEE Software 30, 4 (2013), 64–71.

[8] Umeshwar Dayal, Malú Castellanos, Alkis Simitsis, and Kevin Wilkinson. 2009.
Data integration flows for business intelligence. In EDBT. 1–11.

[9] Harald Gall, Tim Menzies, Laurie Williams, and Thomas Zimmermann. 2014.
Software Development Analytics. Dagstuhl Reports 4, 6 (2014), 64–83.

[10] Paolo Giorgini, Stefano Rizzi, and Maddalena Garzetti. 2005. Goal-oriented
requirement analysis for data warehouse design. In DOLAP. 47–56.

[11] Mikael R. Jensen, Thomas Holmgren, and Torben Bach Pedersen. 2004. Discover-
ing Multidimensional Structure in Relational Data. In DaWaK. 138–148.

[12] Petar Jovanovic, Oscar Romero, Alkis Simitsis, Alberto Abelló, Héctor Candón,
and Sergi Nadal. 2015. Quarry: Digging Up the Gems of Your Data Treasury. In
EDBT. 549–552.

[13] Michael Kläs, Jens Heidrich, Jürgen Münch, and Adam Trendowicz. 2009. CQML
scheme: A classification scheme for comprehensive quality model landscapes.
EUROMICRO (2009), 243–250.

[14] Hans-Joachim Lenz and Arie Shoshani. 1997. Summarizability in OLAP and
Statistical Data Bases. In International Conference on Scientific and Statistical
Database Management. 132–143.

[15] Maurizio Lenzerini. 2002. Data Integration: A Theoretical Perspective. In Proceed-
ings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems. 233–246.

[16] Lidia López, Silverio Martínez-Fernández, Cristina Gómez, Michał Choraś, R.
Kozik, L. Guzmán, A. M. Vollmer, X. Franch, and A. Jedlitschka. 2018. Q-Rapids
Tool Prototype: Supporting Decision-Makers in Managing Quality in Rapid
Software Development. In CAiSE Forum. 200–208.

[17] Silverio Martínez-Fernández, Andreas Jedlitschka, Liliana Guzmán, and Anna-
Maria Vollmer. 2018. A Quality Model for Actionable Analytics in Rapid Software
Development. In Euromicro SEAA 2018.

[18] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a program analysis ecosystem. ICSE, 598–608.

[19] Uthayasankar Sivarajah, Muhammad Mustafa Kamal, Zahir Irani, and Vishanth
Weerakkody. 2017. Critical analysis of Big Data challenges and analytical methods.
Journal of Business Research 70 (2017), 263–286.

[20] Rizkallah Touma, Oscar Romero, and Petar Jovanovic. 2015. Supporting Data In-
tegration Tasks with Semi-Automatic Ontology Construction. In ACM Eighteenth
International Workshop on Data Warehousing and OLAP. 89–98.

[21] Enrique Larios Vargas, Joseph Hejderup, Maria Kechagia, Magiel Bruntink, and
Georgios Gousios. 2018. Enabling Real-Time Feedback in Software Engineering.
In ICSE (NIER). 21–24.

[22] Stefan Wagner, Andreas Goeb, Lars Heinemann, Michael Kläs, Constanza Lam-
pasona, Klaus Lochmann, Alois Mayr, Reinhold Plösch, Andreas Seidl, Jonathan
Streit, and Adam Trendowicz. 2015. Operationalised product quality models and
assessment: The Quamoco approach. Information and Software Technology 62
(2015), 101–123.

[23] Dongmei Zhang, Shi Han, Yingnong Dang, Jian Guang Lou, Haidong Zhang, and
Tao Xie. 2013. Software analytics in practice. IEEE Software 30, 5 (2013), 30–37.

https://www.iso.org/standard/35733.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software analytics and software quality
	2.2 Automating data integration tasks

	3 Integrating Data Sources for Software Analytics
	3.1 An ontology for software analytics
	3.2 Information requirements for end users

	4 Software Analytics: current static approach 
	5 Towards Automated Software Analytics
	6 Conclusions and Future Work
	Acknowledgments
	References



